Session – 2023-24 (even semester)

Class & Section: - B. Sc. 1st Year (2nd Sem.) Non-Medical

Subject & Name of Paper: - Physics: Properties of Matters, Kinetic Theory and Relativity (Paper Code: PHY 201)

Weeks Topic Covered		Topic Covered
		Introduction to Properties of Matter Elasticity
		Hooke's law
	lst Week	Elastic constants and their relations
		Poisson's ratio
		Torsion of cylinder and twisting couple
	2nd Week	Bending of beam (bending moment and its magnitude)
		Cantilevers, centrally loaded beam
		Kinetic Theory of Gases
	3rd Week	Assumptions of Kinetic Theory of gases
		Law of equipartition of energy
		Applications for specific heats of gases
	4th Week	Test
		Maxwell distribution of speeds
		Maxwell distribution of velocities
	5th Week	Derivation of Maxwell distribution of speeds
		Derivation of Maxwell distribution of Velocities
		Experimental verification of Maxwell's Law of speed distribution
	6th Week	cont. Experimental verification of Maxwell's Law of speed distribution
		Most probable speed & Problems
		Average speed & Problems
	7th Week	R.m.s. speed & Problems
		Mean free path Lecture
		Transport of energy Lecture
	8th Week	Transport of momentum
		Diffusion of gases
		Brownian motion (qualitative)
	9th Week	Real gases
Van de		Van der Waal's equation
	10th Week	Test

	Reference systems,	
	Inertial & Non-Interial frames,	
	Galilean invariance	
11th Week	Conservation laws,	
	Newtonian relativity principle	
	Michelson - Morley experiment	
13th Week Test		
	Lorentz transformations	
	length contraction, time dilation	
14th Week	velocity addition theorem	
	Continued velocity addition theorem	
	variation of mass with velocity	
15th Week	Mass energy equivalence	
	Discussion on Assignment & Numerical Problems	
	Test	
16th Week	Test	

Session – 2023-24 (even semester)

Class & Section:- B. Sc I NM

Subject & Name of Paper:- Physics: Electromagnetic Induction and Electronic Devices

(Paper Code: PHY 202)

Week s	Topic Covered
	Electromagnetic Induction: Growth and decay of current in a circuit with (a) Capacitance and resistance
	Growth and decay of current in a circuit with (b) resistance and inductance
lst Week	Growth and decay of current in a circuit with (c) Capacitance and inductance (d) Capacitance resistance and inductance.
	AC circuit analysis using complex variables with (a) capacitance and resistance,
2nd	(b) resistance and inductance (c) capacitance and
Week	inductance (d) capacitance, inductance and resistance
	Series and parallel resonant circuit. Quality factor (Sharpness of resonance)
3rd	Test
Week	Semiconductor Diodes, Energy bands in solids.
	Intrinsic and extrinsic semiconductor, Hall effect,
4th	P-N junction diode and their V-I characteristics. Zener and avalanche breakdown.
Week	Resistance of a diode, Light Emitting diodes (LED).
	Photo conduction in semiconductors
5th	photodiode,
Week	Solar Cell.
	Diode Rectifiers , P-N junction half wave
	full wave rectifier
6th Week	Types of filter circuits (Land - with theory).
	Zener diode as voltage regulator,
7th	simple regulated power supply.
Week	Transistors Junction Transistors,
	Bipolar transistors,
8th	working of NPN and PNP transistors,
Week	Transistor connections (C-B,
9th	C-E, C-C mode), constants of transistor
Week	Transistor characteristic curves (excluding h parameter analysis),

	advantage of C-B configuration.
	C.R. O. (Principle, construction and working in detail).
10th	Test
Week	Transistor Amplifers, Transistor biasing, methods of Transistor biasing
	D.C. load line. Common-base and common-emitter transistor biasing.
11th	Common-base, common- emitteer amplifers. Classification of amplifers
Week	Resistance-capacitance (R-C) coupled amplifer (two stage;
	concept of band width, no derivation).
13th	Feed-back in amplifers, advantage of negative feedback Emitter
Week	Oscillators
	Principle of Oscillation, Classification of Oscillator.
14th	Condition for self-sustained oscillation
Week	Barkhousen Criterion for oscillations.
	Tuned collector common emitter oscillator.
15th	Hartley oscillator. Colpitts's oscillator
Week	Test
	Discussion on Assignment
16th	Hands on Numerical Problems
Week	Test

Session – 2023-24 (even semester)

Class & Section:- B. Sc II NM

Subject :- Statistical Mechanics PHY-401

Weeks	Topic Covered
1 st Week	Lecture 1: Unit-I: Introduction:
	Probability
	Lecture 2: some probability
	considerations
	Lecture 3 : Combinations possessing
	maximum probability
2 nd Week	Lecture 4: combinations possessing
	minimum probability
	Lecture 5 : Distribution of molecules in two boxes
	Lecture 6: : Case with weightage (general).
3 rd Week	Lecture 7 : Phase space
	Lecture 8: microstates and macrostates
	Lecture 9: statistical fluctuations
4 th Week	Lecture 10 : constraints and accessible
	States
	Lecture 11: Thermodynamical
	probability
	Lecture 12: Numericals of unit-1
5 th Week	Lecture 13: Revision of unit -1
	Lecture 14: Test of unit -1
	Lecture 15 : Postulates of Statistical
	Physics
cth XV 1	
6 th Week	Lecture 16: Division of Phase space
	Lecture 17: Condition of equilibrium
	between two system in thermal contact
ath we t	Lecture 18: Entropy and Probability
/" Week	Lecture 19: Boltzmann's distribution
	law
	Lecture 20: Boltzmann's distribution
	law (contd.)
	Lecture 21: Evaluation of A and b

8 th Week	Lecture 22: Bose-Einstein statistics Lecture 23 : Bose-Einstein statistics (contd) Lecture 24 : Application of B.E. Statistics to Planck's radiation law
9 th Week	Lecture 25: B.E. gas. Lecture 26: B.E. gas (contd.) Lecture 27 : Numerical of unit 2
10 th Week	Lecture 28: Revision of unit-2 Lecture 29: Test of unit-2 Lecture 30: Fermi-Dirac statistics (intro.)
11 th Week	Lecture 31: Fermi-Dirac statistics (contd.) Lecture 32: M.B. Law as limiting case of B.E. statistics Lecture 33: Degeneracy
12 th Week	Lecture 34: B.E. Condensation Lecture 35: B.E. Condensation (contd.) Lecture 36: Fermi- Dirac Gas
13 th Week	Lecture 37 : Fermi- Dirac Gas (contd.) Lecture 38 : Electron gas in metals Lecture 39 : Electron gas in metals (contd.)
14 th Week	Lecture 40 : Zero point energy Lecture 41 : Specific heatof metals and its solution Lecture 42: Numerical of unit 3
15 th Week	Discussion on Previous year question paper test
16 th Week	Revison and test

Session – 2023-24 (even semester)

Class & Section:- B. Sc II NM

Subject :- Optics II, PHY-402

Weeks	Topic Covered	
Introduction		
	Interference by Division of Amplitude	
Ist Week	Interference by Division of Amplitude and thin film and Color of thin films	
	wedge shaped film(contd.)	
	wedge shaped film(contd.)	
2nd Week	Newton's rings	
	Newton's rings Contd.	
	Numericals on Newton rings	
3rd Week	Interferometers Michelson's interferometer	
	Michelson's interferometer for Standardization of a meter	
	Michelson's interferometer for determination of wave length	
4th Week	Fresnel's Diffraction (introduction)	
	Fresnel's half period zones	
	zone plate,	
5th Week	diffraction at a straight edge	
	rectangular slit and circular aperture.	
	Diffraction at circular aperture	
6th Week	Unit test	
	Fraunhofer diffraction(introduction)	
	One-slit diffraction	
7th Week	Two-slit diffraction	
	N-slit diffraction,	
	Numericals	
8th Week	Plane transmission granting spectrum	
	Dispersive power of a grating	
	Limit of resolution	
9th Week	Rayleigh's criterion	
	resolving power of telescope and a grating	
	test	
10th Week	Introduction to wave nature of light	
	Polarisation and Double Refraction	
	Polarisation by reflection	
11th Week	Polarisation by scattering	
	Malus law, Phenomenon of double refraction	
	Huygen's wave theory of double refraction (Normal and oblique incidence)	
13th Week	Analysis of Polarized light	
14th Week	Nicol prism	

	Quarter wave plate and half wave plate		
	production and detection of (i) Plane polarized light (ii) Circularly polarized light and		
	(iii)Elliptically polarized light,		
	Optical activity, Fresnel's theory of rotation		
	Specific rotation, Polarimeters (half shade and Bi-quartz).		
15th Week	Discussion previous Year question paper		
	Test		
	Test		
16th Week	Test		

Session – 2023-24 (even semester)

Class & Section:-B. Sc III NM

Subject:-Physics ATOMIC AND MOLECULAR AND LASER PHY 601

Weeks	Topic Covered
1 st Week	Lecture 1: Unit-I : Vector atom model
	Lecture 2: Quantum numbers associated
	with vector atom model
	Lecture 3 : Penetrating orbits (qualitiative description)
and xx 1	
2 nd Week	Lecture 4 : Non- penetrating orbits (qualitiative description)
	Lecture 5 : Spectral lines in different series of ailkali spectra
	Lecture 6 : Continue (Spectral lines in different series of ailkali spectra)
3 rd Week	Lecture 7 : Spin orbit interactionand doublet term separation
	Lecture 8: LS or Russel-Saunder Coupling
	(expressions for interaction energies)
	Lecture 9 : JJ Coupling (expressions for interaction energies)
4 th Week	Lecture 10: Zeeman effect (normal and Anormalous)
	Lecture 11 : Zeeman pattern of D 1 and D2 lines of Na-atom
	Lecture 12: Test
5 th Week	Lecture 13: Paschen, Back effect of a
	single valence electron system Lecture 14: Weak field Strak effect of
	Hydrogen atom

	Lecture 15 : test
6 th Week	Lecture 16: Discete set of electronic energies of molecules
	Lecture 17: Quantisation of Vibrational energies
	Lecture 18: Quantisation of ratiationalenergies
7 th Week	Lecture 19: Raman effect (Quantitative description)
	Lecture 20: Stoke's lines
	Lecture 21: Test
8 th Week	Lecture 22: Anti Stoke's lines Lecture 23 : Main features of a laser : Directionality, high intensity Lecture 24 :test
9 th Week	Lecture 25:. High degree of coherence
	Lecture 26: Spatial and temporal coherence
	Lecture 27 : test
10 th Week	Lecture 28: Einstein's coefficients Lecture 29: Possibility of amplification Lecture 30: Momentum transfer, life time of a level
11 th Week	Lecture 31: Test Lecture 32: Kinetics of optical obsorption Lecture 33: Threshold condition for laser emission
12 th Week	Lecture 34: Laser pumping Lecture 35: He-Ne laser (Principle, Construction and Working). Lecture 36 RUBY laser (Principle, Construction and Working).

13 th Week	Lecture 37, 38,39: Applications of laser in the field of medicine and industry.
14 th Week	Lecture 40, 41,42: Discussion of previous year papers
15 th Week	Lecture 43: Discussion of previous year papers Lecture 44: Test

Session – 2023-24 (even semester)

Class & Section:- B. Sc III NM

Subject:-NUCLEAR PHYSICS ,PHY 602

Weeks	Topic Covered
1 st Week	 Lecture 1: Nuclear mass and binding energy Lecture 2: Systematics nuclear binding energy Lecture 3: Nuclear stability
2 nd Week	Lecture 4: Detail discussion of Nuclear size Lecture 5: Nuclear spin, parity Lecture 6: : Statistics magnetic dipole moment, quadrupole moment (shape concept)
3 rd Week	Lecture 7: Determination of mass by Bain-Bridge Lecture 8 : Bain-Bride and Jordan mass spectrograph Lecture 9: Test
4 th Week	 Lecture 10:. Determination of charge by Mosley law Lecture 11: Determination of size of nuclei by Rutherford Back Scattering Lecture 12: Interaction of heavy charged particles (Alpha particles)
5 th Week	 Lecture 13: Alpha disintegration and its theory Energy loss of heavy charged particle (idea of Bethe formula) Lecture 14: Energetics of alpha-decay, Range and straggling of alphaparticles Lecture 15: Geiger-Nuttal law

6 th Week	Lecture 16: Introduction of Beta-particle, Origin of continuous
	beta-spectrum (neutrino hypothesis).
	Looturo 17 I Turner of hete descended
	energetics of beta decay
	Lecture 18: Energy loss of beta- particles
	(ionization). Range of electrons, absorption
	of beta-particles
eth xxx 1	
7 th Week	Lecture 19: Test
	Lecture 20: Interaction of Gamma Ray,
	Nature of gamma rays
	Lecture 21: Energetics of gamma rays,
	passage of Gamma radiations through matter
	by photoelectric effect.
8 th Week	Lecture 22: Energetics of gamma rays,
	passage of Gamma radiations through
	matter by compton effect
	Lecture 23: Energetics of gamma rays, passage of Gamma
	radiations through matter by pair production effect
	Lecture 24: Ashorption of Gamma
	ravs (Mass attenuation coefficient) and
	its application
oth TTT 1	
9 th Week	Lecture 25: Nuclear reactions, Elastic
	cattering
	disintegration
	Lecture 27: Test
10 th Week	Lecture 28: Photoneuclear reaction, Radiative capture
	Lecture 29: Direct reaction, heavy ion
	reactions and spallation Reactions
	Lecture 30: Conservation laws. Q-
	value and reaction threshold

11 th Week	Lecture 31: Test
	l ecture 32: Nuclear Reactors General
	aspecta of Depoten design
	aspects of Reactor design
	Lecture 33: Nuclear fission and fusion
	reactors (Principles construction
	working and use)
1 oth XV 1	Volking and use)
12 th Week	Lecture 34 : Linear accelerator, Tendem accelerator, Cyclotron
	and Betatron accelerators
	Locture 35: Jonization chamber
	proportional counter.
	Lecture 36: Test
13 th Week	Lecture 37: G.M. counter detailed
	study
	Lecture 38: Scintillation counter and
	semiconductor detector
14 th Week	Lecture 39: Test
15 th Week	Lecture 40: Discussion of previous
	year papers
	Lecture 41: Test
	Lecture 42: Discussion on test