Session – 2023-24 (odd semester)

Class & Section:- B. Sc I NM

Subject:- PHY 101 : Mechanics

Weeks	Topic Covered
	Introduction to paper
	Mechanics of single and system of particles.
Ist Week	Numerical Problems
	Conservation of law of linear momentum.
	Conservation of law Angular momentum
2nd Week	Numerical Problems
	Conservation of Mechanical energy.
	Numerical Problems
3rd Week	,Centre of mass and equation of motion
	Numerical problems
	Constrained motion
4th Week	Degrees of freedom
	Students Problems related to Unit 1
	Generalized coordinates, displacement, velocity
5th Week	Numerical problems
	Generalized acceleration, momentum.
	Numerical problems
6th Week	Generalized force and potential.
	Unit-1 (Internal Assessment- Test)
	Hamilton's variational principle
7th Week	Lagrange's equation of motion from Hamilton's Principle.
	Linear Harmonic oscillator,
	simple pendulum,
8th Week	Atwood's machine.
	Numerical Problems from Unit-2
	Numerical Problems from Unit-2
9th Week	Students problems related to Unit-2
	Rotation of Rigid body
	Moment of inertia.
10th Week	Numerical problems
	Torque, angular momentum
	Numerical problems
11th Week	Kinetic energy of rotation.
	. Unit-2 (Internal Assessment- Test)
13th Week	Theorems of perpendicular and parallel axes with proof

	Moment of inertia of solid sphere	
	Moment of inertia of Hollow sphere and Spherical shell.	
	Moment of inertia of solid cylinder, hollow cylinder	
14th Week	Moment of Inertia solid bar of rectangular cross-section.	
	Acceleration of a body rolling down on an inclined plane.	
	Numerical Problem Unit-3	
15th Week	Numerical Problem Unit-3	
	Discussion previous Year question paper	
	Test	
16th Week	Test	

Session – 2023-24 (odd semester)

Class & Section:- B. Sc I NM

Subject:- PHY 102 : ELECTRICITY AND MAGNETISM

Weeks	Topic Covered
	Introduction to paper
	Mathematical Background : Scalars and Vectors, dot and cross product,
Ist Week	Triple vector product
	Numericals
2nd	Differentiation of a vector,
Week	Gradient of a scalar and its physical significance,
	Integration of a vector (line, surface and volume integral and their physical significance),
	Gauss's divergence theorem
3rd Week	Stocks theorem.
STU WEEK	Electrostatic Field
4th	Derivation of field E from potential as gradient,
Week	Derivation of Laplace and Poisson equations.
WEEK	Electric flux
	Gauss's Law and its application to spherical shell,
	uniformly charged infinite plane and uniformity charged straight wire, mechanical
5th Week	force of charged surface,
	Energy per unit volume.
6th	Magnetostatics Magnetic Induction, magnetic flux,
Week	Test
	Numericals
7th	Unit solenoidal nature of Vector field of induction.
Week	Properties of B
	Electronic theory of Dia and para magnetism (Langevin's theory).
	Domain theory of ferromagnetism.
8th Week	Cycle of Magnetisation - Hysteresis (Energy dissipation, Hysteresis loss and importance of Hysteresis curve).
WEEK	Contt Cycle of Magnetisation - Hysteresis (Energy dissipation, Hysteresis loss and
	importance of Hysteresis curve).
	Discussion on previous years question from unit II
9th Week	Test
	Unit III Electromagnetic Theory
10th	Maxwell equation and their derivations,
Week	Contt Maxwell equation and their derivations,
	Contt Maxwell equation and their derivations,
11th	Test
Week	Displacement Current.
	Vector and scalar potentials,

13th	Contt. Vector and scalar potentials,
Week	boundary conditions at interface between two different media,
	contt boundary conditions at interface between two different media,
14th	Contt. boundary conditions at interface between two different media,
Week	Contt boundary conditions at interface between two different media,
	Propagation of electromagnetic wave (Basic idea, no derivation).
15th	Poynting vector and Poynting theorem.
Week	Discusssion previous Year question paper
	Discusssion previous Year question paper
16th	Test
Week	Test

Session – 2023-24 (odd semester)

Class & Section:- B. Sc II NM

Subject:- Physics Computer programming and thermodynamics PHY 301

Weeks	Topic Covered
1 st Week	Lecture 1: Unit-I : Computer
	Programming: Computer
	organization, Binary representation
	Lecture 2: Algorithm development,
	Lecture 3: flow charts and their
	interpretation.
2 nd Week	Lecture 4: Flowchart and algorithm-
	based problems
	Lecture 5 : Fortran Preliminaries: Integer and floating
	point arithmetic expression,
	Lecture 6: built in functions executable and non-
	executable statements, input and output statements,
3 rd Week	Lecture 7: Formats,
	Lecture 8: I.F.and GO TO
	statements,
.1	Lecture 9: Do statement
4 th Week	Lecture 10: Dimension, arrays
	statement
	Lecture 11: Function and function
	subprogram.
	Lecture 12: Test
5 th Week	Lecture 13: Unit-II Thermodynamics-
	I : Second law of thermodynamics,
	Lecture 14: Carnot theorem,
	Absolute scale of temperature,
	Lecture 15 : test
6 th Week	Lecture 16: Absolute Zero,
0 WCCK	Lecture 17: Entropy, show that
	dQ/T=O, T-S diagram Nernst heat
	law,
	Lecture 18: Joule's free expansion, Joule Thomson
	(Porous plug) experiment. Joule - Thomson effect.
7 th Week	Lecture 19: Liquefication of gases.
	Lecture 19. Liquification of gases
	Contt.
	Lecture 21: Test
8 th Week	Lecture 21: Test
O WEEK	to internal combustion Engine.

	Lecture 23 :Unit III-
	Thermodynamics-II : Derivation of
	Clausius – Claperyron Equation
	latent heat equation
	Lecture 24 :test
9 th Week	Lecture 25:. Phase diagram
	Lecture 26: triple point of a
	substance.
	Lecture 27 : test
10 th Week	Lecture 28: Development of Maxwell
	thermodynamical relations.
	Lecture 29: contt. Development of
	Maxwell thermodynamical relations.
	Lecture 30: Application of Maxwell
	relations in the derivation
	of relations between entropy,
	specific heats and thermodynamic
	variables.
11 th Week	Lecture 31: Test
	Lecture 32: Thermodynamic
	functions
	Lecture 33: Internal energy (U),
12 th Week	Lecture 34: Helmholtz function (F),
	Lecture 35: Enthalpy (H),
	Lecture 36 Gibbs function (G)
13 th Week	Lecture 37, 38,39: Relations
	between thermodynamics function.
14 th Week	Lecture 40, 41,42: Application of maxwell equations
15 th Week	Lecture 43: Discussion of previous
	year papers
	Lecture 44: Test

Session – 2023-24 (odd semester)

Class & Section:- B. Sc II NM

Subject:- Optics – I ,PHY 302

Weeks	Topic Covered
1 st Week	Lecture 1: Unit-I: Fourier Analysis
	and Fourier Transforms : Speed of
	transverse waves on a uniform
	string.
	Lecture 2: Speed of longitudinal
	waves in a fluid
	Lecture 3: superposition of waves
	(physical idea)
2 nd Week	Lecture 4: Fourier Analysis of
	complex waves
	Lecture 5: Fourier Analysis
	application for the solution of
	triangular
	Lecture 6: : Fourier Analysis rectangular waves,
3 rd Week	Lecture 7: Application of Fourier
	analysis to half wave rectifier output
	Lecture 8 : Application of Fourier
	analysis to full wave rectifier out
	puts.
	Lecture 9: Test
4 th Week	Lecture 10: Fourier transforms and
4 week	
	its properties.
	Lecture 11: Application of fourier transform to following function.
	$f(x) = e_{xx}$
	$\Gamma(X) = C^{\alpha \alpha}$
	Lecture 12: Application of fourier
	transform to following function.
	f(x) = I [x] <a< td=""></a<>
	0 [x] >a
eth xx 1	
5 th Week	Lecture 13: Unit II Geometrical
	optics : Introduction
	to Geometrical Optics :

	Lecture 14: Matrix methods in
	paraxial optics,
	Lecture 15: Metrix method for
	translation
6 th Week	Lecture 16: Metrix method
0 WCCK	
	for refraction
	Lecture 17 : derivation of thin lens
	using matrix method,
	Lecture 18: thick lens formulae
	using matrix method,
7 th Week	Lecture 19: Test
	Lecture 20: unit plane, nodal planes,
	Lecture 21: system of thin lenses,
8 th Week	Lecture 22: Chromatic,
	Lecture 23: spherical
	Lecture 24: coma,
	,
9 th Week	Lecture 25: astigmatism and
	Lecture 26: distortion aberrations
	and their remedies.
	Lecture 27: Test
10 th Week	Lecture 28: Unit Interference
	: Introduction to Interference
	Lecture 29: Interference by Division
	of Wavefront :
	Lecture 30:Young's Double slit
	Experiment
d d th TTT d	
11 th Week	Lecture 31: Test
	Lecture 32: Fringe width in Young's
	Double slit experiment
	functions
	Lecture 33: Interference of white
	light vs monochromatic light
	and law of conservation of energy in
	interference

12 th Week	Lecture 34 : Fresnel's Biprism Lecture 35: Applications of Fresnel's Biprism in determination of wavelength of sodium light Lecture 36: Test
13 th Week	Lecture 37: Application of Frenel's Bi-prism in determination of thickness of mica sheet, Lecture 38: Lioyd's mirror, Lecture 39: phase change on reflection.
14 th Week	Lecture 40: Difference Between interference by Liyod mirror and Frsenel's Bi-prism Lecture 41: Discussion of previous year papers Lecture 42: Test
15 th Week	 Lecture 43: Discussion of previous year papers Lecture 44: Test Lecture 45: Discussion on test

Session – 2023-24 (odd semester)

Class & Section:- B. Sc III NM

Subject:- SOLID STATE PHYSICS ,PHY 501

Weeks	Topic Covered
	Crystalline and glassy forms, liquid crystals
	Crystal structure, periodicity, lattice, and basis
Ist Week	Crystal translational vectors
	Crystal translational axes
	Unit cell and primitive cell
2nd Week	Winger Seitz primitive Cell
	Numerical on unit 1
	Symmetry operations for a two-dimensional crystal
3rd Week	Bravais lattices in two dimensions
	Bravais lattices in three dimensions
	Contt: Bravais lattices in three dimensions
4th Week	TEST
	Crystal planes
	Contt: Crystal Planes
5th Week	Miller indices
	Numericals on Miller indices
	Formation of Interplanar spacing
6th Week	Numericals on interplaner spacing
	Crystal structures of Zinc sulphide
	Crystal structures of Sodium Chloride
7th Week	Crystal structures of Diamonds.
	X-ray diffraction
	Bragg's Law
8th Week	Numericals on Bragg's Law
	Experimental x-ray diffraction methods
	K-space
9th Week	TEST
	Reciprocal lattice and its physical significance
	Reciprocal lattice vectors
10th Week	Reciprocal lattice to a simple cubic lattice
	Reciprocal lattice to B C C
	Reciprocal lattice to F C C
11th Week	Relation between three lattices
	Numericals
	Test
13th Week	Introduction to specific heat of solids
14th Week	Dulong and Pettit's law of specific heat of solids and its drawbacks

	Einstein's theory of specific heat
	Drawbacks of Einstein theory of specific heat
	Debye model of specific heat of solids.
	Comparison of three theories of specific heats of solids.
15th Week	Test
	Previous year question paper discussion
	Previous year question paper discussion
16th Week	Test

Session – 2023-24 (odd semester)

Class & Section:- B. Sc III, NM

SUBJECT: QUANTUM MECHANICS , : PHY 502

Week s	Topic Covered
	Introduction to paper
lst	Failure of (Classical) E.M. Theory,
Week	quantum theory of radiation (old quantum theory)
	Photon, photoelectric effect and Einstein's photoelectric equation
2nd	Compton Effect theory
Week	Contt : Compton Effect discussion on result
	Numericals on Compton Effect
3rd	Test
Week	Inadequacy of old quantum theory, de-Broglie hypothesis
	Davisson and Germer experiment
4th	G.P. Thomson experiment
Week	Phase velocity and group velocity
	Heisenberg's uncertainty principle
5th	Time-energy
Week	Angular momentum
	position uncertainty, Uncertainty principle
6th	de-Broglie wave, (wave-particle duality).
Week	Gamma Ray Microscope
	Electron diffraction from a slit
7th	TEST
Week	Derivation of time dependent Schrodinger wave equation
	Derivation of time- independent Schrodinger wave equation
8th	Discussion of Schrodinger wave equation
Week	Eigen values, Eigen functions, wave functions and its significance.
	Normalization of wave function
9th	concept of observable and operator
Week	Solution of Schrodinger equation
	equation for harmonic oscillator excited states
	equation for harmonic oscillator ground states
10th	Application of Schrodinger equation in the solution of the following one-dimensional
Week	problems
11th	Schrodinger equation in the solution of the following 2-dimensional problems
Week	Discussion of Schrodinger equation in the solution of the following 2-dimensional problems

	Free particle in one dimensional box
	Free particle in two dimensional box
13th	Free particle in three dimensional box
Week	Problem class
	solution of Schrödinger wave equation, Eigen function, Eigen values
14th	solution of Schrödinger wave equation quantization of energy and momentum
Week	solution of Schrödinger wave equation nodes and antinodes, zero point energy
	One-dimensional potential barrier E>V0 (Reflection and Transmission coefficient.
	One-dimensional potential barrier, E>V0 (Reflection Coefficient, penetration of leakage
15th	coefficient, penetration depth).
Week	Discussion previous Year question paper
	Discussion previous Year question paper
16th	Test
Week	Test